

Consensus Marking 15 March 2025 by Mr. Ho Tik Shun

What are the challenges you have encountered when implementing B2 in school?

How do you think of using this sample task for your SBA in school?

Can the tasks address the concerns you have raised on B2?

Sharing by Ms. Jennifer Leung in SBA Conference (12 Oct 2024) Challenges/obstacl

es

START

Students' Work

SUCCESS

Full Report VS Guided Questions

<u> Scenario – Cold Pressor Test</u>

Authentic Scenario

Sudden temperature stress can trigger physiological responses in the human body by activating the autonomic nervous system.

The **Cold Pressor Test** is used clinically as a stress test to evaluate cardiac autonomic function. The procedures in the test assess an individual's *responses in the cardiovascular system* and *pain tolerance level* in response to exposure to cold stress on a hand. The test involves immersing a person's hand in ice-cold water for a specified duration (e.g., 5 minutes) while monitoring the individual's pain tolerance level and cardiovascular responses.

In this investigation, you will investigate your own *cardiovascular responses* and *pain tolerance level* to cold stress on your hand in the cold pressor test. You will also examine factors that may influence an individual's pain tolerance in response to cold stress on the hand using class data.

- 1. Measure and record your height and weight with a scale.
- 2. Use an electric arm sphygmomanometer to measure your initial blood pressure and heart rate.
- Immerse your hand up to the wrist into the tray of ice water (Figure 1). Start the stopwatch immediately after immersion.
- Measure your blood pressure and heart rate at 1-minute intervals using the electric arm sphygmomanometer (Figure 2).
- Withdraw your hand from the water after 5 minutes or when you feel physiological discomfort, whichever occurs first. Record the duration of immersion immediately after the withdrawal of hand. (Try to tolerate the cold water for at least 1 minute.)
- Measure your blood pressure and heart rate 2 minutes after the withdrawal of your hand, at 1-minute intervals
 using the electric arm sphygmomanometer.
- Rate your perceived level of pain on a scale from 0 to 5 (0 = no pain, 1-2 = mild pain, 3-4 = moderate pain 5 = severe pain).

<u>Cold Pressor Test</u> Procedure

Figure 1. Immersing a hand in ice-cold water covering the palm and wrist

Figure 2. Measuring the blood pressure and heart rate using an electric arm sphygmomanometer

(a)	Record your per	rsonal infor	mation in t	he space pro	ovided belo	w.				
	Age:									
	Sex:		Male	Fen	nale				U	ita kecoraing
	 Height (cm 	ı):								
	 Weight (kg 	.):								
(b)	Record the data	collected f	rom the col	ld pressor te	est:					
								[B]		3
	 Perceived 1 	evel of pair	n (0-5):							
		(0 = no)	o pain, 1-2	= mild pain	3-4 = mod	lerate pain,	5 = severe	pain).		Collecting a relatively
	(2) Duration of	f immersion	n of the han	d (min: sec):					large data set
C	ardiovascular	Time	after imm	ersing the h	and in ice	-cold water	r (min)	Time withdraw	after ving hand	
	responses	0	1	2	3	4	5	1	2	
pro	Systolic blood essure (mmHg)									
D	Diastolic blood essure (mmHg)									
(1	Heart rate beats per min)									

Title: Changes in systolic blood pressure, diastolic blood pressure and heart rate during the cold pressor test

B2 Assessment Guidelines

- Data Recording, Analysis & Interpretation
- Constructing & Evaluating Explanations
- **Errors, Limitations & Improvement**

Excellent

Future Work & Conclusion

Basic

Good

Others

Unattained

Mark range	Quality of work	Performance
9-10	Excellent	The report shows most of the good performances and a few excellent performances.
6-8	Good	The report shows most of basic performances and some good performances.
3-5	Fair	The report shows some basic performances and a few good performances.
1-2	Poor	The report shows a few basic performances.

	Basic Performances	Good Performances	Excellent Performances
lysis &	B1. Record qualitative data using clear descriptions/quantitative data (corrected to appropriate decimal places/ significant figures) properly.	G1. Construct and use appropriate representations (e.g., tables, graphs and/or diagrams) to organise and display data.	
ing, Ana	B2. Carry out basic calculations (e.g., percentages, frequencies, rates, means, ratios) to simplify or summarise data.	G2. Compare data sets based on (semi-)quantitative and/or qualitative data.	E1. Apply concepts of basic statistics (e.g., range, variance, standard deviation, error bar) to compare and explain data sets.
Record	B3. Identify anomalous data, if any, in the data set.	G3. Explain why the data are considered anomalous.	E2. Suggest possible explanations for anomalous data (e.g., human related errors) or ways to confirm if the data are anomalous.
Data			E3. Interpret the results in the control(s) to evaluate the success of the experiment/the influence of the experimental manipulation.
ting	B4. Describe and interpret the relationships/trends and patterns in the data sets, if any, in relation to the investigative problem.	G4. Explain the relationships/trends and patterns in the data sets in relation to the investigative problem using scientific ideas and principles.	
g & Evalus anations		G5. Describe and interpret the relationships/trends and patterns in more complex data sets (e.g., with multiple variables), if any, in relation to the investigative problem.	E4. Explain the relationships/trends and patterns in more complex data sets (e.g., with multiple variables) in relation to the investigative problem using scientific ideas and principles.
Expl		G6. Evaluate if the testing hypothesis, if any, is supported, refuted, or remains undetermined according to the data.	E5. Discuss alternative hypothesis, if any.
Cons	B5. Make claim(s) based on data/evidence in relation to investigative problem.	G7. Construct (an) evidence-based claim(s) that include(s) qualitative and/or quantitative data to explain the investigative problem.	E6. Construct (an) evidence-based explanation(s)/Evaluate alternative explanations in relation to the investigative problem.
8 &		G8. Identify significant measurement errors (e.g., uncertainties/errors inherent in the measurement system).	E7. Explain the impact of measurement error on the validity and reliability of data/conclusion.
imitation		G9. Suggest valid improvements to reduce (the impact of) measurement error (e.g., using better tools, repeating measurements).	E8. Explain why the improvements can reduce (the impact of) measurement error.
Errors, I Impi		G10. Explain the limitations of experimental design (e.g., sample selection, sample size, range and intervals) in generating data to answer the investigative problem.	E9. Suggest and explain valid improvements/furthe data collection to address the limitations of the experimental design in relation to the investigative problem.
		G11. Make informed decisions based on the data/findings of the investigation	
vork &		G12. Suggest new investigations to be conducted that are relevant to the findings of the investigation.	E10. Discuss the generalisability of the conclusion.
onclu	B6. Make a conclusion in relation to the investigative problem.		
Fu			E11. Discuss how to modify or extend an investigation to answer a new investigative question.
r		G13. Explain how a specific step can impact on the validity and reliability of the data.	E12. Evaluate the overall validity and reliability of the data/evidence or methods that can influence the validity and reliability of the data/evidence.
Other			E13. Assess the appropriateness and adequacy of the experimental design (e.g., selection of the range and interval of the independent variable(s), measurement of the dependent variable(s), confounding variables, biases in the data) based on the data.

Student's Performance Summary

Question	Performance item	Performance level
(b) (d)(1) (d)(2) (d)(3) (e)(1) (e)(2) (f) (g)(1) (g)(2)(i) (g)(2)(ii)	[B1] [G1] [G5] [E4] [G8] [E7] [B6] [G2] [G7] [G7] [B2]	UBGC UBGC UBGC UBGC UBGC UBGC UBGC UBGC
(g)(3) (g)(4)	[E8] [E12]	$ \begin{array}{c c} U & B & G & E \\ U & B & G & E \\ U & B & G & E \end{array} $
Total		UBGE
Mark		/10

E										~		
Fil	e Home	Insert Pa	ige Layout	Formulas	Data	Review	View	Help	Acrobat	Q Te	ell me what	you wa
-0-	🖞 🔏 Cut	Arial		+ 10 ·	A A	= =	- 8	ab ab	Wrap Text		General	
	Copy 🔹								•		-	
-asi	e 💉 Format Pa	inter B I	<u>∪</u> • ⊞	• 🔷 • 🗛	A A	= =	= •		Merge & Cen	ter *	₩ • %	,
	Clipboard	r ₂₄	F	ont	6	1		Alignment		F ₂	Nur	nber
34	×	× ✓	f _x =	J32+((H32-J32)/3)							
d]	A	В	1	С	1	D	1		E	R.	F	
									Du	ring im	mersion (C	minut
8	Responden *	Gender	You You	r Height (cm)	You	Weight	kg) -	Systolic E	BP (mmHq)	Diast	tolic BP (n	mH -
	3	Male		164		53		1	05		81	
8	8	Male		174		50.5		1	10		73	
1	9	Male		180		75		1	30		77	
	10	Female		171.5		64.3		1	07		75	
	11	Female		160		48		1	17		66	
8	12	Male		182		69		1	13		73	
1	13	Female		171		73		1	19		88	
)	14	Male		170.5		54.5			94		76	
1	15	Male		175		59		1	29		58	
2	17	Male		172		87			43		86	
3	18	Female		162		49.3			99		70	
1	19	Female		164		58.3			88		64	
5	20	Female		168		46			97		63	
5	21	Female		165		49			98		71	
7	23	Male		173	-	53		-	40		63	
3	24	Female		154	-	43			80		51	
3	25	Male		169	-	64			22		71	
2	27	Male		171	-	45			02		69	
1	28	Male		175	-	55			00		67	
2	29	Male		169		53			41		89	
2	31	Female		174		63			18		83	
•	34	Mala		174 5	-	60			32		71	
+	25	Eamola		1/4.5	-	69			32		67	
2	20	Mala		170		50			14		72	
7	30	Iviale		1/0	-	61			00		13	
	39	Mala		172		64.0			17		04	
2	40	Iviale		1/2		64.9			17		00	
2	41	Female		100	-	44			13		60	
	43	Iviale		1/6		02	_	1	02	-	59	
	o. of participants	S	16	8.9821429		58.6			43		74	
2	Average				-				11	_	/1	
5					-					-	04 05 170	
+	MAP									-	84.654761	19
2					_		_					
2						-						
(S	systolic BP (m	mHg Diasto	lic BP (mmHg) Heart	Rate (per	min)				8	
5	0	111.74		72.42	_	83.44						unar
1	1	117.73		78.98		86.61		130	.00			
)	2	120.46		78.54	-	82.64						
1	3	119.35		75.91	_	81.52		120	.00	-		-
2	4	114.13		75.00		87.18		110	00			
3	5	113.30		73.70	_	81.39		110				
4	6	107.26		67.45		78.21		100	.00			
-												

Cold Pressor Test

 Sufficient number of guiding questions (within 40-50 mins) with sufficient G/E questions

More complex data set

- Multivariate design
- Pooling class data

Encourage meaningful use of data for

- finding unknown patterns
- explanation building

Student scripts obtained from...

- **An EMI co-educational school**
- **Two S.5 classes with similar learning ability (55 students)**
- **Taught by the same Biology Teacher for 3 years**

Discussion on the samples...

Questions

- What are your *general impressions* of the samples?
- Did you encounter any difficulties in scoring the samples?

(a)	Record your per	rsonal infor	mation in t	he space pro	ovided belo	w.				
	Age:									
	Sex:		Male	Fen	nale				U	ita kecoraing
	 Height (cm 	ı):								
	 Weight (kg 	.):								
(b)	Record the data	collected f	rom the col	ld pressor te	est:					
								[B]		3
	 Perceived 1 	evel of pair	n (0-5):							
		(0 = no)	o pain, 1-2	= mild pain	3-4 = mod	lerate pain,	5 = severe	pain).		Collecting a relatively
	(2) Duration of	f immersion	n of the han	d (min: sec):					large data set
C	ardiovascular	Time	after imm	ersing the h	and in ice	-cold water	r (min)	Time withdraw	after ving hand	
	responses	0	1	2	3	4	5	1	2	
pro	Systolic blood essure (mmHg)									
D	Diastolic blood essure (mmHg)									
(1	Heart rate beats per min)									

Title: Changes in systolic blood pressure, diastolic blood pressure and heart rate during the cold pressor test

Data Analysis & Interpretation

(d) Scientists construct graphs to observe trends and patterns in the data.

Scan this QR code to learn about different types of graphical representations.

(1) Construct a suitable graph to show the changes in your cardiovascular responses (i.e., systolic blood pressure, diastolic blood pressure and heart rate) during the cold pressor test (i.e. just before your hand immersion in the ice-cold water to 2 minutes after withdrawing your hand)

 $[G1] \square U \square B \square G$

G1. Construct and use appropriate representations (e.g., tables, graphs and/or diagrams) to organise and display data.

Concepts for marking

- Appropriate labelling of axes with correct units
 - Heart rate (beats per minute)
 - Blood pressure (mmHg)
 - Time (min)
 - Indicating the time when the hand was withdrawn
- Appropriate title

Cardiovascular Responses during Cold Pressor Test

Appropriate scales

(*Note:* hand-drawn graphs not on graph paper \rightarrow unattained)

Achieve all of the three requirements \rightarrow Good Achieve some of the three requirements \rightarrow Basic

Hardly achieve any of the three requirements unattained

Students' Performance

Student B

Student A

<u>Data Analysis &</u> <u>Interpretation</u>

(d) Scientists construct graphs to observe trends and patterns in the data.

Scan this QR code to learn about different types of graphical representations.

- (1) Construct a suitable graph to show the changes in your cardiovascular responses (i.e., systolic blood pressure, diastolic blood pressure and heart rate) during the cold pressor test (i.e. just before your hand immersion in the ice-cold water to 2 minutes after withdrawing your hand)
- (2) Describe the changes in your cardiovascular responses during the cold pressor test.

G5. Describe and interpret the relationships/trends and patterns in more complex data sets (e.g., with multiple variables), if any, in relation to the investigative problem.

 $[G1] \square U \square B \square G$

[G5] U B G

Concepts for marking

- Describe the general trends (for the changes in heart rate and blood pressure), not merely stating the data
- Identify time *periods* showing the changes/trends

(i.e., 0 to 1 min/time of withdrawal, and after withdrawal)

(3) It is known that the sympathetic nerves become more active in response to cold stress on the hand. Based on your biological knowledge, explain the changes in *heart rate* that occur during the first minute of the cold pressor test.

[E4] U B G E

E4. Explain the relationships/trends and patterns in more complex data sets (e.g., with multiple variables) in relation to the investigative problem using scientific ideas and principles.

Concepts for assessment

Achieve three requirements \rightarrow Excellent

Achieve two requirements \rightarrow Good

Achieve one requirement \rightarrow Basic

Hardly achieve any requirement \rightarrow unattained

• State the response

The **heart rate increased** during the first minute of the cold pressor test.

• Describe the regulation process

The sympathetic nerve becomes more active and **releases more noradrenaline**

• Identify the effector (i.e., SA node)

The noradrenaline **stimulates the activity of the SA node**, increasing the heart rate

(3) It is known that the sympathetic nerves become more active in response to cold stress on the hand. Based on your biological knowledge, explain the changes in *heart rate* that occur during the first minute of the cold pressor test.

(3) It is known that the sympathetic nerves become more active in response to cold stress on the hand. Based on your biological knowledge, explain the changes in *heart rate* that occur during the first minute of the cold pressor test.

Student B	[E4] U [] B 🗌 G 🔲 E
For the first min	to period of the celd pressor test, hast rate increases. This is due to the su	ulder drop
in temperature on t	he suface of the hard, such actively activiting sympathetic verves, which i	Contributes
to maintain home	istasis. Sympatholic none isable to trigger the release of thormone, such as	holepineptrine,
which stimul	its and sends more active signals to the SA rode. Where then leads to the	increase in
peart rate, as	SA node is responsible to control the beating pace of the head. With the	inerrane in
heart rate, it i	rereases blood supply to the body, where the blood contains oxygen, i	Rich isured
to generate mon	e heat as converted by energy by metabolic activities, such as respiration.	
Reference		Not accurate
• The <i>heart rate i</i>	ncreased during the first minute of the cold pressor test.	
• The sympatheti	c nerve becomes more active and releases more noradrenaline.	Good
 The noradrenali 	ne <u>stimulates the activity of the SA node</u> and the cardiac muscle, increasing the	

heart rate.

(e) (1) State one significant measurement error that occurred when measuring your cardiovascular responses. $[G8] \square U \square B \square G$

G8. Identify significant measurement errors (e.g., uncertainties/errors in the measurement system, including random and systematic errors).

Concepts for marking

- Any reasonable measurement errors (Good performance)
 - Related to the limitations of the instrument (takes 30 s to measure each reading)
 - Emotional status of the participant
- Human errors as a result of mistakes in operation should have been addressed in Area A but significant ones may still be awarded basic performance

(e) (1) State *one* significant measurement error that occurred when measuring your cardiovascular responses. $[G8] \square U \square B \square G$

Student A

acenem, oe monitor. Inpure monitor mill result in erroneous affecting the arcuran en auterne inti duning ressor ter

 The error mentioned is not a measurement error but mistakes in the operation during the experiment.

Basic

(e) (1) State *one* significant measurement error that occurred when measuring your cardiovascular responses. $[G8] \square U \square B \square G$

Student B

Errors due to changes in blood pressure caused by the emotional status of the participant are mentioned Good

to the budy to rapidly response to the cold stress.

(1) State one significant measurement error that occurred when measuring your cardiovascular responses. (e) $[G8] \square U \square B \square G$

The cardiovascular responses are not measured acurately at 1-minute interval since the

third minute of immersing my hand into the ice water. when measuring the blood ressure and

heart rate, the sphygmomonometer showed 'error' and no valid reading is obtained. The sphygmomonometer

is then immediately restarced and readings were taken, and causing the data reading from the

3rd minute to have a delay for around 30 seconds. This may be due to the moving or the position

of hand slightly changed to nearby the level same as the heart. 2) Explain how this measurement errors can affect the validity of this investigation. (2)

Limitation of the measurement tools is mentioned

Good

E7. Explain the impact of measurement error(s) on the validity and reliability of data/conclusion.

Concepts for marking

- State and explain the effect of the identified measurement error on the *measured heart rate* and *blood pressure*.
- Explain why the measured values are invalid (i.e., not only affected by the cold treatment but *also by other factors not related to the one under investigation*.)

[E7] U B G E

Student A

[E7] 🗌 U 🗌 B 🗌 G 🗌 E

Student B

The measurement error affecting the measured blood pressure should <u>also</u> be explained.

Good

[E7] U B G E
When participants feel seress edianxiety itle heavoundourine regulating methanisms that modulate
indivasionlar function will be affected and hormones (corticised and advenaline) are released, cause
and heart rate
the blood vessels construct. This construction increases the blood pressure. Also, the anxiety level may
and heart rate
the blood pressure the followed pressure change with the anxiety level change. Therefore,
the blood pressure increases may obscure the physic by in a effects of the cold-water stress stimulus.
B State and explain the effect of the identified measurement error on the measured heart rate and blood pressure.

Explain why the measured values are invalid (i.e., not only affected by the cold treatment but also by the unstable emotion of the participant.)

Excellent

(f) What can you conclude from this part of the investigation?

B6. Make a conclusion in relation to the investigative problem.

Concepts for marking

 State the change of heart rate and blood pressure when the hand was immersed in ice-cold water (f) What can you conclude from this part of the investigation?

Student A

Reference

• Did not mention the blood pressure increased when the hand was immersed in ice-cold

[B6] U B

(g) To make sense of the class data provided in the Google Spreadsheet, you have conducted additional online research to gather more information.

All you need to know about the Cold Pressor Test!

Individuals can be grouped into two groups, the *tolerant group* and the *non-tolerant group* based on the results in the cold pressor test. Tolerant group can tolerate hand immersion in ice-cold water for more than 1.5 minutes while non-tolerant group cannot tolerate hand immersion in ice-cold water for more than 1.5 minutes and would withdraw their hands.

- 1. The two groups would perceive different levels of pain during the cold pressor test.
- The two groups show different changes in *Mean Arterial Pressure* (MAP). The changes can be seen at 1 minute during the cold pressor test.

*MAP is a measure of the average pressure exerted on the arterial walls throughout the cardiac cycle and can be calculated using the following formula:

$$MAP = DBP + \frac{SBP - DBP}{3}$$

SBP = Systolic blood pressure; DBP = Diastolic blood pressure

3. Female with a height of less than 150 cm show more variations in the change in *cardiac output* during the immersion period than males with a height of 150 cm or above.

G2. Compare data sets based on (semi-)quantitative and/or qualitative data.

If the class is divided into two groups based on the above criterion (i.e., the tolerant group and the non-tolerant group), compare the average weight of individuals in these two groups.

$$G2$$
] U B G

	5-0-	÷												
File	e Home	Insert	Page Layo	out Fo	ormulas	Data	Review	View	Help	Acrobat	Qт	ell me what	t you wa	
4	🔏 Cut	Ari	ial		+ 10 ·	- A A	= = ,		ab v	Vrap Text		General		
Pact	🚽 🗊 Copy 🔹		×		B	abr		- 1						
+	💉 Format I	Painter B	I <u>U</u> •	•	<u>∽ - A</u>	· Â ·		= •=		Aerge & Cer	nter *	* %	,	
	Clipboard	5		Font		5	a	A	lignment		r ₂	Nu	mber	
J34	*	: ×	$\checkmark f_x$	=J32	+((H32-J32	2)/3)								
a)	A	B			с	1	D		E		- fi	F		
										Du	uring im	mersion (0 minut	
2	Responden	- Gen	der 🔻	Your He	eight (cm)	You	r Weight (k	g) - S	ystolic Bl	P (mmHg)	- Dias	tolic BP (r	mmH -	
3	3	Ma	le	1	64		53		10)5		81		
L.	8	Ma	le	1	74		50.5		11	10		73		
5	9	Ma	le	1	80		75		13	30		77		
5	10	Fem	nale	17	71.5		64.3		10	07		75		
8	11	Fem	nale	1	60		48		11	17		66		
3	12	Ma	le	1	82		69		11	13		73		
)	13	Fem	nale	1	71		73		11	19		88		
0	14	Ma	le	17	70.5		54.5		9	4		76		
1	15	Ma	le	1	75		59		12	29		58		
2	17	Ma	le	1	72		87		14	13		86		
3	18	Fem	nale	1	62		49.3		9	9		70		
4	19	Fem	ale	1	64		58.3		8	8		64		
5	20	Fem	ale	1	68		46		9	7		63		
6	21	Fem	ale	1	65		49		9	8		71		
7	23	Ma	le	1	73		53		14	0		63		
8	24	Fem	nale	1	54	-	43		8	n		51		
9	25	Ma	lo	- 1	69		64		10	22		71		
0	27	Ma		1	71		45		10	12		60		
1	28	Ma			76		45		10	00		67		
2	20	Ma	lo		60	_	53		1	11		80		
2	23	Form			74		53		14	10		03		
3	24	ren	late		74 5	-	00			10		74		
4	34	IVIa	le		4.5	-	69		1	2		67		
C	35	rem	lale		50	-	50			14		0/		
0	30	IVIa	lie		10		01		10	0		13		
1	39	Fem	hale		5/	_	58		ŏ	3		64		
8	40	IVIa	lle	1	12	_	64.9			17		86		
9	41	Fem	hale		60		44		1	13		65		
0	43	Ma	le	1	76	_	82	_	10)2		59		
1 No	Average	nts		168.9	821429	-	58.6		4	3		71		
3	Average										-			
4	MAD					-					-	94 65476	10	
5	IVI/NF											04.00470	15	
-						-		_						
7		Ountalia DI		in stalin I) Lland	Data (ass a	(aia)						
1	0	Systolic Br		astolic 1	BP (mmrg) Heart	Rate (per n	nin)					Char	
0	1	111	72	70	2.42	-	03.44						Ulid	
9	-	117	.13	10	0.30	-	00.01		130.0	00				
1	2	120	.40	10	5.04	-	02.04		400.4					
1	3	119	42	1:	5.91		01.52		120.0		-			
2	4	114	.13	75	0.00		07.10		110.0	00	_			
5	5	113	.30	73	5.70	_	81.39							
4	6	107	.26	67	1.45	_	78.21		100.0	00				
5	7	104	.60	65	5.95		79.69							
	- F	Raw Data	Toleran	t Gp	Non-toler	ant Gp	Male	Female	Tole	rant group		(+)		

- Tolerant group can tolerate hand immersion in ice-cold water for more than 1.5 minutes
- Non-tolerant group cannot tolerate hand immersion in ice-cold water for more than 1.5 minutes and would withdraw their hands.

Sorting data into two groups...

M	<u>Mean Weight</u>										
?	Tolerant Group:	58.6 kg									
?	Non-tolerant Group:	49.3 kg									

Concepts for marking

Approach:

- Correctly put the data into two groups and calculate the average weight of each group
- Compare the average weight of the two groups

If the class is divided into two groups based on the above criterion (i.e., the tolerant group and the non-tolerant group), compare the average weight of individuals in these two groups.

Student A

Μ	ean Weight	
	Tolerant Group:	

Non-tolerant Group:

58.6 kg

49.3 kg

 $[G2] \Box U \Box B \Box G$

If the class is divided into two groups based on the above criterion (i.e., the tolerant group and the non-tolerant group), compare the average weight of individuals in these two groups.

Student B

Good

Mean Weight	
Tolerant Group:	58.6 kg
Non-tolerant Group:	49.3 kg

 $[G2] \Box U \Box B \Box G$

(g) To make sense of the class data provided in the Google Spreadsheet, you have conducted additional online research to gather more information.

All you need to know about the Cold Pressor Test!

Individuals can be grouped into two groups, the *tolerant group* and the *non-tolerant group* based on the results in the cold pressor test. Tolerant group can tolerate hand immersion in ice-cold water for more than 1.5 minutes while non-tolerant group cannot tolerate hand immersion in ice-cold water for more than 1.5 minutes and would withdraw their hands.

- 1. The two groups would perceive different levels of pain during the cold pressor test.
- The two groups show different changes in Mean Arterial Pressure (MAP). The changes can be seen at 1 minute during the cold pressor test.

*MAP is a measure of the average pressure exerted on the arterial walls throughout the cardiac cycle and can be calculated using the following formula:

$$MAP = DBP + \frac{SBP - DBP}{3}$$

SBP = Systolic blood pressure; DBP = Diastolic blood pressure

3. Female with a height of less than 150 cm show more variations in the change in *cardiac output* during the immersion period than males with a height of 150 cm or above.

G7. Construct (an) evidence-based claim(s) in relation to the investigative problem using relevant data.

(2) Explain whether the class data <u>supports</u> or <u>does not support</u> each of the statements about the differences in the two groups as mentioned in the above online research.

H	5.9.	Ŧ												
File	Home	Insert	Page La	ayout	Formulas	Data	Review	View	Help	o Acr	obat 🖓	Tell me wh	at you wa	
4	🔏 Cut	Ar	ial		+ 10 ·	A A	= =	*	-	ab Wrap	Text	General		
Paste	Copy	B	ΙU	•	- <u>&</u> - <u>A</u>	+ abc +		= +	→	Merge	& Center 🔹	5 - 9	6 , 4	
	Clipboard	Painter		Fo	ont				Alianme	nt	r	5 N	umber	
12.4		1.		e	1224//1122 122	1/21								
154			~)	*	JSZT((HSZ-JSZ	.]/ >]				_		-		
4	A	E	3		C		D			E		F		
	-										During i	mmersion	(0 minut	
2	Responden Gender		ider 💌	Your	Height (cm)	You	r Weight (k	(g) 🔻	Systolic	c BP (mi	stolic BP	(mmH -		
5	3	Ma	ale		164		53			105		81		
	8	Ma	ale		174		50.5			110		73		
>	9	Ma	ale		180		75			130		11		
5	10	Fen	nale		171.5		64.3			107		75		
6	11	Fen	nale		160		48			117		66		
3	12	Ma	ale		182		69			113		73		
)	13	Fen	nale		171		73			119		88		
0	14	Ma	ale		170.5		54.5			94		76		
1	15	Ma	ale		175		59			129		58		
2	17	Ma	ale		172		87			143		86		
3	18	Fen	nale		162		49.3			99		70		
4	19	Fen	nale		164		58.3			88		64		
5	20	Fen	nale		168		46			97		63		
6	21	Een	nale		165		49			98		71		
7	23	Ma	ale		173	-	53			140		63		
8	24	Fen	nale		154		43			80		51		
9	25	Ma	alo		169	-	64			122		71		
0	27	M	alo		171		45			102		60		
1	21	IVIC	ale.		175		40			102		09		
2	20	IVIa	ale la		1/5	-	50			144		07		
2	29	IVIa	lie		109	-	53			141		09		
3	31	Fen	hale		1/4	-	63			118		83		
4	34	Ma	ale		1/4.5	-	69			132		/1		
5	35	Fen	nale		150	_	50			114		67		
6	38	Ma	ale		178		61			100		73		
7	39	Fen	nale		157		58			83		64		
8	40	Ma	ale		172		64.9			117		86		
9	41	Fen	nale		160		44			113		65		
0	43	Ma	ale		176		82			102		59		
1 No	o. of participa	nts		16	8.9821429		58.6			43				
2	Average									111		71		
3														
4	MAP											84.6547	619	
5														
6														
7		Systolic B	P (mmHo	Diasto	lic BP (mmHa) Heart	Rate (per l	min)						
8	0	111	74		72 42	,	83 44	,					Char	
9	1	117	73		78 98		86 61						S. I.GI	
0	2	120	46		78 54	1	82 64		1	30.00				
1	3	110	35		75.91		81 52		1	20.00				
2	4	114	13		75.00		87 18			20.00	-			
3	5	114	30		73 70		81 30		1	10.00				
1	6	107	26		67.45	-	78 01			00.00				
5	7	107	60		65.95	-	70.21		1	00.00				
5	1	104			00.00	1	15.05					~		
1	- F	Raw Data	Toler	ant Gp	Non-toler	ant Gp	Male	Fema	le T	olerant o	roup	(+)		

- Tolerant group can tolerate hand immersion in ice-cold water for more than 1.5 minutes
- Non-tolerant group cannot tolerate hand immersion in ice-cold water for more than 1.5 minutes and would withdraw their hands.

Sorting data into two groups...

Mean Pain Level (out of 5)						
?	Tolerant Group:	3.25				
?	Non-tolerant Group:	3.73				

Approach:

- Students will use the data of the perceived level of pain for the two groups
- They will compare the means of this parameters for the two groups to assess the validity of the statement.

(2) Explain whether the class data <u>supports</u> or <u>does not support</u> each of the statements about the differences in the two groups as mentioned in the above online research.

	Statement	Put a "✓" into the appropriate boxes	Explanation based on evidence from the class data (Note: Include quantitative data whenever appropriate)
Student A Good Mean Pain Level (out of 5)	1	 Support Do NOT support 	The average pain level of the to event group is 3.55 atle the avorage pain level of the Non-tolement group is 3.7 The pain perverved by tolerant group is less than the non-tolerant group. G71 UDB G
Non-tolerant Group: 3.73	Statement	Put a "✓" into the appropriate boxes	Explanation based on evidence from the class data (<i>Note</i> : Include quantitative data whenever appropriate)
Student B Good	1	☑ Support □ Do NOT support	The average fevel of pain recorded from the non-tolerant group is 3,6154 (co 4 dp), while it is 3,25 the it le to know group, this shows that the tolerant group has perceived less pain comparing to that of non-tolerant group

(g) To make sense of the class data provided in the Google Spreadsheet, you have conducted additional online research to gather more information.

All you need to know about the Cold Pressor Test!

Individuals can be grouped into two groups, the *tolerant group* and the *non-tolerant group* based on the results in the cold pressor test. Tolerant group can tolerate hand immersion in ice-cold water for more than 1.5 minutes while non-tolerant group cannot tolerate hand immersion in ice-cold water for more than 1.5 minutes and would withdraw their hands.

- 1. The two groups would perceive different levels of pain during the cold pressor test.
- The two groups show different changes in *Mean Arterial Pressure* (MAP). The changes can be seen at 1 minute during the cold pressor test.

*MAP is a measure of the average pressure exerted on the arterial walls throughout the cardiac cycle and can be calculated using the following formula:

$$MAP = DBP + \frac{SBP - DBP}{3}$$

SBP = Systolic blood pressure; DBP = Diastolic blood pressure

- 3. Female with a height of less than 150 cm show more variations in the change in *cardiac output* during the immersion period than males with a height of 150 cm or above.
- (2) Explain whether the class data <u>supports</u> or <u>does not support</u> each of the statements about the differences in the two groups as mentioned in the above online research.

B2. Carry out basic calculations (e.g., percentages, frequencies, rates, means, ratios) to simplify or summarise data.

G7. Construct (an) evidence-based claim(s) in relation to the investigative problem using relevant data.

t	5.6.	÷													
Fi	le Home	Insert	Page La	yout	Formulas	Data	Review	Viev	w н	lelp	Acrobat	Qт	ell me w	hat you	ı wa
-	Cut	Aria	1		+ 10 +	A A	= =	=	87 -	ab W	rap Text		Genera	el .	
Pas	te * Format Pa	inter B	ΙU	- ==	- <u>ð</u> - <u>А</u> -	abc -	==	= 3	← = →=	E M	erge & Cen	iter -	œ.,	%,	5
Č	Clipboard	r <u>s</u>		Fo	nt	5			Align	ment		r,		Numbe	r
J34		×	√	. =	32+((H32-J32)	/3)									
4	A	В			с	1	D			E			F		
											Du	irina im	mersio	n (0 mi	nute
>	Responden -	Gend	er 🔻	Your	Height (cm) -	You	Weight (ka) -	Syst	tolic BP	(mmHa)	Dias	tolic BF	(mm	-
3	3	Male	9		164		53	-3/		105			81	1	-
	8	Male	2		174		50.5			110			73		
5	9	Male	9		180		75			130	r -		77		
5	10	Fema	le		171.5		64.3			107			75		
6	11	Fema	le		160		48			117			66		
3	12	Male	2		182		69			113			73		
3	13	Fema	le		171		73			119	1		88		
0	14	Male	•		170.5		54.5			94			76		
1	15	Male	•		175		59			129			58		
2	17	Male	2		172		87			14	1		86		
3	18	Fema	le		162	-	49.3			99			70		
4	19	Fema	le		164	-	58.3			88			64		
5	20	Fema			168		46			97			63		
6	21	Fema			165	-	49			98 140			71	71	
7	23	Mak			173		53						63		
8	23	Fema	lo		154	-	43						51		
a	24	Mak			169		64			122			71		
0	23	Mak	5		171		46			122			60		
1	21	Mak	3		175	-	40			102			67		
1	20	In the last	3		1/5		50			100			0/		
2	29	Ivial	3		109	-	53			14			03		
3	31	rema	lie		1/4	-	63			110			63		
4	34	Male	9		1/4.5		69			132	9		/1		
5	35	Fema	lle		150		50			114	3	67			
6	38	Mal	9		1/8		61			100		73			
1	39	Fema	le		157		58			83			64		
8	40	Male	9		172		64.9			117			86		
9	41	Fema	le		160		44			113			65		
0	43	Male	9		176		82			102			59		
1	lo. of participant	S		16	8.9821429		58.6			43					
2	Average								0	111			71		
3															
4	MAP												84.654	7619	
5															
6															
7	S	systolic BP	(mmHg	Diastol	ic BP (mmHg)	Heart	Rate (per	min)							
8	0	111.7	4		72.42		83.44							Ch	ar
9	1	117.7	73		78.98		86.61			120.04					
0	2	120.4	16		78.54		82.64			130.00					
1	3	119.3	35		75.91		81.52			120.00)		-	-	
2	4	114.1	13		75.00		87.18								-
3	5	113.3	30		73.70		81.39			110.00					
4	6	107.2	26		67.45		78.21			100.00	i				
5	7	104.6	50		65.95		79.69								
	R	aw Data	Tolera	ant Gp	Non-tolera	int Gp	Male	Fem	nale	Tolera	int group	Ì.	(+)		

So	Sorting data into two groups						
M	IAP						
То	lerant G	roup:					
?	0 min	84.65 mmHg					
?	1 min	92.51 mmHg					
Nc	on-tolera	nt Group:					
?	0 min	87.15 mmHg	SBP - D	RP			
?	1 min	88.09 mmHg	$MAP = DBP + \frac{3BT - BT}{3}$				

SBP = Systolic blood pressure; DBP = Diastolic blood pressure

Approach:

- Students will choose the blood pressure data at the 1st minute and 0 minute and calculate the changes in mean arterial pressure (MAP) for both groups.
- They will compare the values between the two groups to evaluate the validity of the statement.

Concepts for marking

- Calculate the value correctly (B2 Carry out basic calculations (e.g. percentages, frequencies, rates, means, ratios) to simplify or summarise data)
- Select the appropriate claim
- Identify the appropriate data set to justify the claims

(**G7** - *Construct (an) evidence-based claim(s)* that include(s) qualitative and/or quantitative data to explain the investigative problem)

(2) Explain whether the class data <u>supports</u> or <u>does not support</u> each of the statements about the differences in the two groups as mentioned in the above online research.

Good Unattained

(3) The method used in this investigation to measure an individual's *perceived level of pain* is subject to measurement error. Describe and explain *one* improvement to reduce the impact of this error.

E8. Explain why the improvements can reduce (the impact of) measurement error(s).

Concepts for marking

• Describe one improvement

Changes in the rating scale and descriptors for different pain levels

Explain why the improvement can reduce subjectivity among different individuals

(e.g., Providing clear reference points in terms of the rating scale to ensure that students have a standardised framework to assess and quantify the pain levels in comparable ways between different individuals) (3) The method used in this investigation to measure an individual's *perceived level of pain* is subject to measurement error. Describe and explain *one* improvement to reduce the impact of this error.

[E8] U B G E

Student A

(3) The method used in this investigation to measure an individual's *perceived level of pain* is subject to measurement error. Describe and explain *one* improvement to reduce the impact of this error.

Student B

Reference

- Use more than one type of measure to reflect the pain level (e.g., skin colour of the hand)
- Provide clear reference points in terms of the rating scale to ensure that students have a standardised framework to assess and quantify the pain levels accurately.

(This is less preferred: Expand the range from 0-5 to 0-10 on the scale; giving more scales can allow finer differentiation but still the methodology can be considered as not accurate)

(4) Explain why your conclusions about whether the factors investigated (i.e., sex, height) can influence the level of pain tolerance are of limited generalizability, even if they are based on class data.

E12. Discuss the generalisability of the results/conclusion.

- Reason related to sample size/selection
 <u>too small</u> to <u>adequately represent the larger population</u>
- Reason related to sample characteristics/diversity
 <u>lacking diversity</u> in terms of <u>sex</u>, height, or other relevant factors
- Limitation in the study design in making causal claims

(e.g., the data only allow investigation of relationships between the factors but not their causal relationships)

(4) Explain why your conclusions about whether the factors investigated (i.e., sex, height) can influence the level of pain tolerance are of limited generalizability, even if they are based on class data.

 $[E12] \square U \square B \square G \square E$

(4) Explain why your conclusions about whether the factors investigated (i.e., sex, height) can influence the level of pain tolerance are of limited generalizability, even if they are based on class data.

Student B

 $[E12] \square U \square B \square G \square E$

Reference

- Sample size is too small and may not adequately represent the larger population.
- The class data may lack diversity in terms of sex, height, or other relevant factors.
- Limitation in the study design in making causal claims is missing

Good

Mark range	Quality of work	Performance
9-10	Excellent	The report shows most of the good performances and a few excellent performances.
6-8	Good	The report shows most of basic performances and some good performances.
3-5	Fair	The report shows some basic performances and a few good performances.
1-2	Poor	The report shows a few basic performances.

Student A

<u>**3**</u> U <u>7</u> в <u>**3**</u> G <u>0</u> е

Most Basic Some Good

7/10

Student B

<u>**2**</u> U <u>**2**</u> в <u>**8**</u> G <u>**1**</u> е

Most Good Few Excellent

8 /10

