

# Briefing session on 2021 HKDSE Mathematics Extended Part Module 2

### Contents

- General marking guidelines
- Candidates' performances

# General marking guidelines

- 'M' marks for correct method with substitution
- 'A' marks for correct answer that follows from the steps
- '1' for correctly completing a proof or arriving at a given answer
- f.t.
  stands for 'follow through', all related parts should be correct to be given this mark

## Common mistakes

- Candidates missed 'dx' in the integration, thus giving wrong expressions like  $\int_a^b f(x)$
- Candidates should use brackets appropriately, missing brackets would result in different meanings:

$$(\ln x)^2$$
 vs  $\ln x^2$ 

$$\frac{d}{dx}\left(x+1-\frac{x-2}{(x-1)^2}\right)$$
 vs  $\frac{d}{dx}x+1-\frac{x-2}{(x-1)^2}$ 

Some candidates did not show the elimination of h properly.

- A small number of candidates used inaccurate wordings such as: "Assume n = m is true for the statement"; "the statement is true for all integers n."
- A small number of candidates used wrong symbols such as  $\sum_{k=1}^{k+1} (3k^5 + k^3)$  or  $\sum_{k=1}^{m+1} (3m^5 + m^3)$ .

#### Part (a)

• Some candidates wrongly stated that x + 1, instead of y = x + 1, is an oblique asymptote.

#### Part (c)

• Some candidates failed to show that  $\frac{d^2}{dx^2} r(x)$  changes sign at the point of inflexion.

#### Part (a)

• A small number of candidates wrongly took the *y*-intercept as *c*.

#### Part (b)

Some candidates used wrong upper or lower limits, e,g, from 0 to c.
 Also, some candidates wrongly thought that the normal is above the curve for the required bounded region.



• Common mistakes found in operations involving logarithm include  $(\ln x)^2 = 2(\ln x)$ ,  $(\ln x)^2 = \ln x^2$  and  $\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1}{x}\right) = \ln x$ .

#### Part (a)

- Some candidates mixed up the notations of determinant and matrix.
- For the case d = -11, many candidates did not give any explanation in rejecting this answer.
- For the case d = 3, some candidates did not mention that the parameter t in the solution set is a real number.

#### Part (b)

- Some candidates drew a conclusion without discussing the sign of the value of the discriminant found.
- Some candidates wrongly wrote 'no solution' instead of 'no real solution'.

#### Part (a)(ii)

• Some candidates used wrong relations like  $tan^2\theta = sec^2\theta + 1$ .

#### Part (b)

• Some candidates just stated that  $\int_{-a}^{a} h(x) dx = 2 \int_{0}^{a} h(x) dx$  without giving reason or steps, or just wrote h(x) = h(-x) as the reason.

#### Part (c)

- Some candidates wrongly identified g(x) and h(x).
- Some candidates did not check whether g(x) + g(-x) = 1 and h(x) = h(-x) for the g(x) and h(x) they suggested.

#### Part (a)

- Many candidates were unable to express PQ in terms of u. Only some candidates were able to find a using differentiation. y
- Some candidates mixed up the variables x, u and a.

#### Part (b)(i)

- Some candidates wrongly used  $A = \frac{u(PQ)}{2}$ .
- Some candidates attempted to solve  $\frac{\mathrm{d}A}{\mathrm{d}u}=0$  .
- A number of candidates just tested the values of A for u = 11 and u = 12 only.

#### Part (b)(ii)

- Most candidates were unable to express OP in terms of u, hence they were unable to use chain rule to find the required rate of change.
- Some candidates wrongly considered  $\frac{dOP}{du}$  instead of  $\frac{dOP}{dt}$ .



#### Part (b)(i)

• Some candidates did not give  $\theta$  in the correct range  $\frac{\pi}{2} < \theta < \pi$ .

#### Part (b)(ii)

• Many candidates were unable to use result of (b)(i) to deduce  $B = P^{-1} \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix} P$ , hence they were unable to complete the proof.

#### Part (b)(iii)

- Most candidates failed to handle  $(kM)^{-1}$ , where k is a constant and M is a square matrix.
- Some candidates wrongly put n = -555 into (b)(ii).

#### Part (a)(i)

• For parallel vectors, instead of  $\frac{12-t}{5} = \frac{-(s+14)}{-4} = \frac{-(2+s)}{-2}$ , some candidates wrongly thought that 12-t=5, s+14=4 and 2+s=2.

#### Part (a)(iii)

- Some candidates did not realise that  $(\overrightarrow{AB} \times \overrightarrow{AC}) \cdot \overrightarrow{AD}$  may be negative.
- Some candidates used wrong symbols that did not match their calculations. E.g. wrote  $\frac{1}{6}(\overrightarrow{AB} \times \overrightarrow{AC}) \times \overrightarrow{AD}$  but calculating  $\frac{1}{6}(\overrightarrow{AB} \times \overrightarrow{AC}) \cdot \overrightarrow{AD}$ , wrote  $\frac{1}{6}\overrightarrow{AD} \cdot |\overrightarrow{AB} \times \overrightarrow{AC}|$  but not calculating the magnitude of  $\overrightarrow{AB} \times \overrightarrow{AC}$ .

#### Part (b)

• Only a small number of candidates were able to show properly that E is not the circumcentre of  $\Delta ABC$ .

# **END**